Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Construction of a rice glycosyltransferase phylogenomic database and identification of rice-diverged glycosyltransferases.

Identifieur interne : 003954 ( Main/Exploration ); précédent : 003953; suivant : 003955

Construction of a rice glycosyltransferase phylogenomic database and identification of rice-diverged glycosyltransferases.

Auteurs : Pei-Jian Cao [États-Unis] ; Laura E. Bartley ; Ki-Hong Jung ; Pamela C. Ronald

Source :

RBID : pubmed:19825588

Descripteurs français

English descriptors

Abstract

Glycosyltransferases (GTs; EC 2.4.x.y) constitute a large group of enzymes that form glycosidic bonds through transfer of sugars from activated donor molecules to acceptor molecules. GTs are critical to the biosynthesis of plant cell walls, among other diverse functions. Based on the Carbohydrate-Active enZymes (CAZy) database and sequence similarity searches, we have identified 609 potential GT genes (loci) corresponding to 769 transcripts (gene models) in rice (Oryza sativa), the reference monocotyledonous species. Using domain composition and sequence similarity, these rice GTs were classified into 40 CAZy families plus an additional unknown class. We found that two Pfam domains of unknown function, PF04577 and PF04646, are associated with GT families GT61 and GT31, respectively. To facilitate functional analysis of this important and large gene family, we created a phylogenomic Rice GT Database (http://ricephylogenomics.ucdavis.edu/cellwalls/gt/). Through the database, several classes of functional genomic data, including mutant lines and gene expression data, can be displayed for each rice GT in the context of a phylogenetic tree, allowing for comparative analysis both within and between GT families. Comprehensive digital expression analysis of public gene expression data revealed that most ( approximately 80%) rice GTs are expressed. Based on analysis with Inparanoid, we identified 282 'rice-diverged' GTs that lack orthologs in sequenced dicots (Arabidopsis thaliana, Populus tricocarpa, Medicago truncatula, and Ricinus communis). Combining these analyses, we identified 33 rice-diverged GT genes (45 gene models) that are highly expressed in above-ground, vegetative tissues. From the literature and this analysis, 21 of these loci are excellent targets for functional examination toward understanding and manipulating grass cell wall qualities. Study of the remainder may reveal aspects of hormone and protein metabolism that are critical for rice biology. This list of 33 genes and the Rice GT Database will facilitate the study of GTs and cell wall synthesis in rice and other plants.

DOI: 10.1093/mp/ssn052
PubMed: 19825588


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Construction of a rice glycosyltransferase phylogenomic database and identification of rice-diverged glycosyltransferases.</title>
<author>
<name sortKey="Cao, Pei Jian" sort="Cao, Pei Jian" uniqKey="Cao P" first="Pei-Jian" last="Cao">Pei-Jian Cao</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant Pathology, University of California, Davis, CA 95616, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology, University of California, Davis, CA 95616</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Bartley, Laura E" sort="Bartley, Laura E" uniqKey="Bartley L" first="Laura E" last="Bartley">Laura E. Bartley</name>
</author>
<author>
<name sortKey="Jung, Ki Hong" sort="Jung, Ki Hong" uniqKey="Jung K" first="Ki-Hong" last="Jung">Ki-Hong Jung</name>
</author>
<author>
<name sortKey="Ronald, Pamela C" sort="Ronald, Pamela C" uniqKey="Ronald P" first="Pamela C" last="Ronald">Pamela C. Ronald</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2008">2008</date>
<idno type="RBID">pubmed:19825588</idno>
<idno type="pmid">19825588</idno>
<idno type="doi">10.1093/mp/ssn052</idno>
<idno type="wicri:Area/Main/Corpus">003425</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003425</idno>
<idno type="wicri:Area/Main/Curation">003425</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">003425</idno>
<idno type="wicri:Area/Main/Exploration">003425</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Construction of a rice glycosyltransferase phylogenomic database and identification of rice-diverged glycosyltransferases.</title>
<author>
<name sortKey="Cao, Pei Jian" sort="Cao, Pei Jian" uniqKey="Cao P" first="Pei-Jian" last="Cao">Pei-Jian Cao</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant Pathology, University of California, Davis, CA 95616, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology, University of California, Davis, CA 95616</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Bartley, Laura E" sort="Bartley, Laura E" uniqKey="Bartley L" first="Laura E" last="Bartley">Laura E. Bartley</name>
</author>
<author>
<name sortKey="Jung, Ki Hong" sort="Jung, Ki Hong" uniqKey="Jung K" first="Ki-Hong" last="Jung">Ki-Hong Jung</name>
</author>
<author>
<name sortKey="Ronald, Pamela C" sort="Ronald, Pamela C" uniqKey="Ronald P" first="Pamela C" last="Ronald">Pamela C. Ronald</name>
</author>
</analytic>
<series>
<title level="j">Molecular plant</title>
<idno type="ISSN">1674-2052</idno>
<imprint>
<date when="2008" type="published">2008</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Cluster Analysis (MeSH)</term>
<term>Databases, Genetic (MeSH)</term>
<term>Expressed Sequence Tags (MeSH)</term>
<term>Gene Expression Profiling (MeSH)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Genetic Variation (MeSH)</term>
<term>Genome, Plant (genetics)</term>
<term>Glycosyltransferases (genetics)</term>
<term>Glycosyltransferases (metabolism)</term>
<term>Internet (MeSH)</term>
<term>Models, Genetic (MeSH)</term>
<term>Mutation (genetics)</term>
<term>Oligonucleotide Array Sequence Analysis (MeSH)</term>
<term>Oryza (enzymology)</term>
<term>Oryza (genetics)</term>
<term>Phylogeny (MeSH)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Sequence Analysis, DNA (MeSH)</term>
<term>Species Specificity (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Analyse de profil d'expression de gènes (MeSH)</term>
<term>Analyse de regroupements (MeSH)</term>
<term>Analyse de séquence d'ADN (MeSH)</term>
<term>Bases de données génétiques (MeSH)</term>
<term>Glycosyltransferase (génétique)</term>
<term>Glycosyltransferase (métabolisme)</term>
<term>Génome végétal (génétique)</term>
<term>Internet (MeSH)</term>
<term>Modèles génétiques (MeSH)</term>
<term>Mutation (génétique)</term>
<term>Oryza (enzymologie)</term>
<term>Oryza (génétique)</term>
<term>Phylogenèse (MeSH)</term>
<term>Protéines végétales (génétique)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Spécificité d'espèce (MeSH)</term>
<term>Séquençage par oligonucléotides en batterie (MeSH)</term>
<term>Variation génétique (MeSH)</term>
<term>Étiquettes de séquences exprimées (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Glycosyltransferases</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Oryza</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Oryza</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Genome, Plant</term>
<term>Mutation</term>
<term>Oryza</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Glycosyltransferase</term>
<term>Génome végétal</term>
<term>Mutation</term>
<term>Oryza</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Glycosyltransferases</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Glycosyltransferase</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Cluster Analysis</term>
<term>Databases, Genetic</term>
<term>Expressed Sequence Tags</term>
<term>Gene Expression Profiling</term>
<term>Gene Expression Regulation, Plant</term>
<term>Genetic Variation</term>
<term>Internet</term>
<term>Models, Genetic</term>
<term>Oligonucleotide Array Sequence Analysis</term>
<term>Phylogeny</term>
<term>Sequence Analysis, DNA</term>
<term>Species Specificity</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de profil d'expression de gènes</term>
<term>Analyse de regroupements</term>
<term>Analyse de séquence d'ADN</term>
<term>Bases de données génétiques</term>
<term>Internet</term>
<term>Modèles génétiques</term>
<term>Phylogenèse</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Spécificité d'espèce</term>
<term>Séquençage par oligonucléotides en batterie</term>
<term>Variation génétique</term>
<term>Étiquettes de séquences exprimées</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Glycosyltransferases (GTs; EC 2.4.x.y) constitute a large group of enzymes that form glycosidic bonds through transfer of sugars from activated donor molecules to acceptor molecules. GTs are critical to the biosynthesis of plant cell walls, among other diverse functions. Based on the Carbohydrate-Active enZymes (CAZy) database and sequence similarity searches, we have identified 609 potential GT genes (loci) corresponding to 769 transcripts (gene models) in rice (Oryza sativa), the reference monocotyledonous species. Using domain composition and sequence similarity, these rice GTs were classified into 40 CAZy families plus an additional unknown class. We found that two Pfam domains of unknown function, PF04577 and PF04646, are associated with GT families GT61 and GT31, respectively. To facilitate functional analysis of this important and large gene family, we created a phylogenomic Rice GT Database (http://ricephylogenomics.ucdavis.edu/cellwalls/gt/). Through the database, several classes of functional genomic data, including mutant lines and gene expression data, can be displayed for each rice GT in the context of a phylogenetic tree, allowing for comparative analysis both within and between GT families. Comprehensive digital expression analysis of public gene expression data revealed that most ( approximately 80%) rice GTs are expressed. Based on analysis with Inparanoid, we identified 282 'rice-diverged' GTs that lack orthologs in sequenced dicots (Arabidopsis thaliana, Populus tricocarpa, Medicago truncatula, and Ricinus communis). Combining these analyses, we identified 33 rice-diverged GT genes (45 gene models) that are highly expressed in above-ground, vegetative tissues. From the literature and this analysis, 21 of these loci are excellent targets for functional examination toward understanding and manipulating grass cell wall qualities. Study of the remainder may reveal aspects of hormone and protein metabolism that are critical for rice biology. This list of 33 genes and the Rice GT Database will facilitate the study of GTs and cell wall synthesis in rice and other plants.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">19825588</PMID>
<DateCompleted>
<Year>2010</Year>
<Month>01</Month>
<Day>21</Day>
</DateCompleted>
<DateRevised>
<Year>2015</Year>
<Month>11</Month>
<Day>19</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">1674-2052</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>1</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2008</Year>
<Month>Sep</Month>
</PubDate>
</JournalIssue>
<Title>Molecular plant</Title>
<ISOAbbreviation>Mol Plant</ISOAbbreviation>
</Journal>
<ArticleTitle>Construction of a rice glycosyltransferase phylogenomic database and identification of rice-diverged glycosyltransferases.</ArticleTitle>
<Pagination>
<MedlinePgn>858-77</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1093/mp/ssn052</ELocationID>
<Abstract>
<AbstractText>Glycosyltransferases (GTs; EC 2.4.x.y) constitute a large group of enzymes that form glycosidic bonds through transfer of sugars from activated donor molecules to acceptor molecules. GTs are critical to the biosynthesis of plant cell walls, among other diverse functions. Based on the Carbohydrate-Active enZymes (CAZy) database and sequence similarity searches, we have identified 609 potential GT genes (loci) corresponding to 769 transcripts (gene models) in rice (Oryza sativa), the reference monocotyledonous species. Using domain composition and sequence similarity, these rice GTs were classified into 40 CAZy families plus an additional unknown class. We found that two Pfam domains of unknown function, PF04577 and PF04646, are associated with GT families GT61 and GT31, respectively. To facilitate functional analysis of this important and large gene family, we created a phylogenomic Rice GT Database (http://ricephylogenomics.ucdavis.edu/cellwalls/gt/). Through the database, several classes of functional genomic data, including mutant lines and gene expression data, can be displayed for each rice GT in the context of a phylogenetic tree, allowing for comparative analysis both within and between GT families. Comprehensive digital expression analysis of public gene expression data revealed that most ( approximately 80%) rice GTs are expressed. Based on analysis with Inparanoid, we identified 282 'rice-diverged' GTs that lack orthologs in sequenced dicots (Arabidopsis thaliana, Populus tricocarpa, Medicago truncatula, and Ricinus communis). Combining these analyses, we identified 33 rice-diverged GT genes (45 gene models) that are highly expressed in above-ground, vegetative tissues. From the literature and this analysis, 21 of these loci are excellent targets for functional examination toward understanding and manipulating grass cell wall qualities. Study of the remainder may reveal aspects of hormone and protein metabolism that are critical for rice biology. This list of 33 genes and the Rice GT Database will facilitate the study of GTs and cell wall synthesis in rice and other plants.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Cao</LastName>
<ForeName>Pei-Jian</ForeName>
<Initials>PJ</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Pathology, University of California, Davis, CA 95616, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bartley</LastName>
<ForeName>Laura E</ForeName>
<Initials>LE</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Jung</LastName>
<ForeName>Ki-Hong</ForeName>
<Initials>KH</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ronald</LastName>
<ForeName>Pamela C</ForeName>
<Initials>PC</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Mol Plant</MedlineTA>
<NlmUniqueID>101465514</NlmUniqueID>
<ISSNLinking>1674-2052</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.4.-</RegistryNumber>
<NameOfSubstance UI="D016695">Glycosyltransferases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D016000" MajorTopicYN="N">Cluster Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030541" MajorTopicYN="Y">Databases, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020224" MajorTopicYN="N">Expressed Sequence Tags</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="N">Gene Expression Profiling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014644" MajorTopicYN="Y">Genetic Variation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018745" MajorTopicYN="N">Genome, Plant</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016695" MajorTopicYN="N">Glycosyltransferases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020407" MajorTopicYN="N">Internet</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008957" MajorTopicYN="N">Models, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020411" MajorTopicYN="N">Oligonucleotide Array Sequence Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012275" MajorTopicYN="N">Oryza</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="Y">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017422" MajorTopicYN="N">Sequence Analysis, DNA</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013045" MajorTopicYN="N">Species Specificity</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>10</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>10</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>1</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">19825588</ArticleId>
<ArticleId IdType="pii">S1674-2052(14)60362-2</ArticleId>
<ArticleId IdType="doi">10.1093/mp/ssn052</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Bartley, Laura E" sort="Bartley, Laura E" uniqKey="Bartley L" first="Laura E" last="Bartley">Laura E. Bartley</name>
<name sortKey="Jung, Ki Hong" sort="Jung, Ki Hong" uniqKey="Jung K" first="Ki-Hong" last="Jung">Ki-Hong Jung</name>
<name sortKey="Ronald, Pamela C" sort="Ronald, Pamela C" uniqKey="Ronald P" first="Pamela C" last="Ronald">Pamela C. Ronald</name>
</noCountry>
<country name="États-Unis">
<region name="Californie">
<name sortKey="Cao, Pei Jian" sort="Cao, Pei Jian" uniqKey="Cao P" first="Pei-Jian" last="Cao">Pei-Jian Cao</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003954 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 003954 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:19825588
   |texte=   Construction of a rice glycosyltransferase phylogenomic database and identification of rice-diverged glycosyltransferases.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:19825588" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020